"""Safety/Bias Checks Router""" from fastapi import APIRouter, UploadFile, File from pydantic import BaseModel from typing import Optional router = APIRouter() class BiasMetrics(BaseModel): demographic_parity: float equalized_odds: float calibration_error: float disparate_impact: float class FairnessReport(BaseModel): protected_attribute: str groups: list[str] metrics: BiasMetrics is_fair: bool violations: list[str] recommendations: list[str] class ComplianceChecklist(BaseModel): regulation: str # GDPR, CCPA, AI Act, etc. checks: list[dict] passed: int failed: int overall_status: str @router.post("/analyze", response_model=FairnessReport) async def analyze_bias( file: UploadFile = File(...), target_column: str = None, protected_attribute: str = None, favorable_outcome: str = None ): """Analyze model predictions for bias""" # TODO: Implement bias analysis with Fairlearn return FairnessReport( protected_attribute=protected_attribute or "unknown", groups=[], metrics=BiasMetrics( demographic_parity=0.0, equalized_odds=0.0, calibration_error=0.0, disparate_impact=0.0 ), is_fair=True, violations=[], recommendations=[] ) @router.post("/compliance-check", response_model=ComplianceChecklist) async def check_compliance( regulation: str = "gdpr", model_info: dict = None ): """Run compliance checklist for a regulation""" # TODO: Implement compliance checking return ComplianceChecklist( regulation=regulation, checks=[], passed=0, failed=0, overall_status="unknown" ) @router.get("/regulations") async def list_regulations(): """List supported regulations and frameworks""" return { "regulations": [ {"code": "gdpr", "name": "EU GDPR", "checks": 15}, {"code": "ccpa", "name": "California CCPA", "checks": 10}, {"code": "ai_act", "name": "EU AI Act", "checks": 20}, {"code": "nist", "name": "NIST AI RMF", "checks": 25}, ] } @router.get("/metrics") async def list_fairness_metrics(): """List available fairness metrics with explanations""" return { "metrics": [ {"name": "demographic_parity", "description": "Equal positive prediction rates across groups"}, {"name": "equalized_odds", "description": "Equal TPR and FPR across groups"}, {"name": "calibration", "description": "Predicted probabilities match actual outcomes"}, {"name": "disparate_impact", "description": "Ratio of positive rates (80% rule)"}, ] }