"""Profitability Analysis Router""" from fastapi import APIRouter, UploadFile, File from pydantic import BaseModel from typing import Optional from datetime import date router = APIRouter() class CostRevenueEntry(BaseModel): date: date feature: str ai_cost: float revenue: float requests: int class ROIAnalysis(BaseModel): feature: str total_cost: float total_revenue: float net_profit: float roi_percent: float cost_per_request: float revenue_per_request: float class ProfitabilityReport(BaseModel): period: str total_ai_cost: float total_revenue: float overall_roi: float by_feature: list[ROIAnalysis] optimization_opportunities: list[dict] @router.post("/analyze", response_model=ProfitabilityReport) async def analyze_profitability( costs_file: UploadFile = File(...), revenue_file: Optional[UploadFile] = File(None) ): """Analyze AI costs vs revenue""" # TODO: Implement profitability analysis return ProfitabilityReport( period="current_month", total_ai_cost=0.0, total_revenue=0.0, overall_roi=0.0, by_feature=[], optimization_opportunities=[] ) @router.post("/log-entry") async def log_cost_revenue(entry: CostRevenueEntry): """Log a cost/revenue entry""" # TODO: Implement entry logging return {"message": "Entry logged", "entry": entry} @router.get("/trends") async def get_trends( start_date: Optional[date] = None, end_date: Optional[date] = None, granularity: str = "daily" # daily, weekly, monthly ): """Get profitability trends over time""" # TODO: Implement trend analysis return { "trends": [], "granularity": granularity } @router.get("/recommendations") async def get_optimization_recommendations(): """Get cost optimization recommendations""" # TODO: Implement recommendation engine return { "recommendations": [ {"type": "model_switch", "description": "Switch feature X from GPT-4 to GPT-3.5", "savings": 0.0}, {"type": "caching", "description": "Implement caching for repeated queries", "savings": 0.0}, {"type": "batching", "description": "Batch requests for feature Y", "savings": 0.0}, ] }