"""Result Interpretation / Report Generator Router""" from fastapi import APIRouter from pydantic import BaseModel from typing import Optional from datetime import datetime router = APIRouter() class MetricInput(BaseModel): name: str value: float previous_value: Optional[float] = None unit: Optional[str] = None threshold_warning: Optional[float] = None threshold_critical: Optional[float] = None class ReportRequest(BaseModel): title: str metrics: list[MetricInput] period: str = "last_30_days" audience: str = "executive" # executive, technical, operational format: str = "markdown" # markdown, json, html class Insight(BaseModel): category: str # improvement, decline, stable, anomaly metric: str description: str action: Optional[str] = None priority: str # high, medium, low class GeneratedReport(BaseModel): title: str generated_at: datetime summary: str insights: list[Insight] action_items: list[str] content: str # Full report content @router.post("/generate", response_model=GeneratedReport) async def generate_report(request: ReportRequest): """Generate an interpreted report from metrics""" # TODO: Implement report generation with LLM insights = [] action_items = [] for metric in request.metrics: # Simple trend analysis if metric.previous_value: change = ((metric.value - metric.previous_value) / metric.previous_value) * 100 if change > 10: insights.append(Insight( category="improvement", metric=metric.name, description=f"{metric.name} increased by {change:.1f}%", priority="medium" )) elif change < -10: insights.append(Insight( category="decline", metric=metric.name, description=f"{metric.name} decreased by {abs(change):.1f}%", action=f"Investigate cause of {metric.name} decline", priority="high" )) return GeneratedReport( title=request.title, generated_at=datetime.now(), summary=f"Report covering {request.period} with {len(request.metrics)} metrics analyzed.", insights=insights, action_items=action_items, content="" ) @router.post("/summarize") async def summarize_metrics(metrics: list[MetricInput]): """Generate an executive summary from metrics""" # TODO: Implement LLM-based summarization return { "summary": "Executive summary placeholder", "key_points": [], "concerns": [] } @router.get("/templates") async def list_report_templates(): """List available report templates""" return { "templates": [ {"name": "weekly_performance", "description": "Weekly AI performance report"}, {"name": "monthly_costs", "description": "Monthly cost analysis report"}, {"name": "quarterly_review", "description": "Quarterly business review"}, {"name": "incident_summary", "description": "Incident and downtime summary"}, ] } @router.post("/schedule") async def schedule_report( template: str, frequency: str, # daily, weekly, monthly recipients: list[str] ): """Schedule automated report generation""" # TODO: Implement report scheduling return { "message": "Report scheduled", "template": template, "frequency": frequency, "recipients": recipients }