"""Label Quality Scorer Router""" from fastapi import APIRouter, UploadFile, File from pydantic import BaseModel from typing import Optional router = APIRouter() class AgreementMetrics(BaseModel): cohens_kappa: Optional[float] = None fleiss_kappa: Optional[float] = None krippendorff_alpha: Optional[float] = None percent_agreement: float interpretation: str # poor, fair, moderate, good, excellent class DisagreementSample(BaseModel): sample_id: str labels: dict # annotator -> label majority_label: Optional[str] = None class QualityReport(BaseModel): total_samples: int total_annotators: int metrics: AgreementMetrics disagreements: list[DisagreementSample] recommendations: list[str] @router.post("/analyze", response_model=QualityReport) async def analyze_labels( file: UploadFile = File(...), sample_id_column: str = "id", annotator_columns: Optional[list[str]] = None ): """Analyze labeling quality from annotations file""" # TODO: Implement label quality analysis return QualityReport( total_samples=0, total_annotators=0, metrics=AgreementMetrics( percent_agreement=0.0, interpretation="unknown" ), disagreements=[], recommendations=[] ) @router.post("/pairwise") async def pairwise_agreement( file: UploadFile = File(...), annotator1: str = None, annotator2: str = None ): """Calculate pairwise agreement between two annotators""" # TODO: Implement pairwise analysis return { "annotator1": annotator1, "annotator2": annotator2, "agreement": 0.0, "kappa": 0.0 } @router.get("/thresholds") async def get_quality_thresholds(): """Get interpretation thresholds for agreement metrics""" return { "kappa_interpretation": { "poor": "< 0.00", "slight": "0.00 - 0.20", "fair": "0.21 - 0.40", "moderate": "0.41 - 0.60", "substantial": "0.61 - 0.80", "almost_perfect": "0.81 - 1.00" } }