"""Model Comparator Router""" from fastapi import APIRouter from pydantic import BaseModel from typing import Optional router = APIRouter() class CompareRequest(BaseModel): prompt: str models: list[str] temperature: float = 0.7 max_tokens: int = 500 class ModelResponse(BaseModel): model: str response: str latency_ms: float tokens_used: int estimated_cost: float class CompareResult(BaseModel): prompt: str responses: list[ModelResponse] fastest: str cheapest: str quality_scores: Optional[dict] = None class EvalRequest(BaseModel): prompt: str responses: dict # model -> response criteria: list[str] = ["coherence", "accuracy", "relevance", "helpfulness"] @router.post("/run", response_model=CompareResult) async def compare_models(request: CompareRequest): """Run a prompt against multiple models and compare""" # TODO: Implement model comparison return CompareResult( prompt=request.prompt, responses=[], fastest="", cheapest="" ) @router.post("/evaluate") async def evaluate_responses(request: EvalRequest): """Evaluate and score model responses""" # TODO: Implement response evaluation return { "scores": {}, "winner": None, "analysis": "" } @router.get("/benchmarks") async def list_benchmarks(): """List available benchmark prompts""" return { "benchmarks": [ {"name": "general_qa", "prompts": 10}, {"name": "coding", "prompts": 15}, {"name": "creative_writing", "prompts": 8}, {"name": "reasoning", "prompts": 12}, ] } @router.post("/benchmark/{benchmark_name}") async def run_benchmark( benchmark_name: str, models: list[str] ): """Run a full benchmark suite against models""" # TODO: Implement benchmark running return { "benchmark": benchmark_name, "results": {}, "summary": "" }