ai-tools-suite/backend/routers/bias.py
2025-12-27 15:33:06 +00:00

96 lines
2.7 KiB
Python

"""Safety/Bias Checks Router"""
from fastapi import APIRouter, UploadFile, File
from pydantic import BaseModel
from typing import Optional
router = APIRouter()
class BiasMetrics(BaseModel):
demographic_parity: float
equalized_odds: float
calibration_error: float
disparate_impact: float
class FairnessReport(BaseModel):
protected_attribute: str
groups: list[str]
metrics: BiasMetrics
is_fair: bool
violations: list[str]
recommendations: list[str]
class ComplianceChecklist(BaseModel):
regulation: str # GDPR, CCPA, AI Act, etc.
checks: list[dict]
passed: int
failed: int
overall_status: str
@router.post("/analyze", response_model=FairnessReport)
async def analyze_bias(
file: UploadFile = File(...),
target_column: str = None,
protected_attribute: str = None,
favorable_outcome: str = None
):
"""Analyze model predictions for bias"""
# TODO: Implement bias analysis with Fairlearn
return FairnessReport(
protected_attribute=protected_attribute or "unknown",
groups=[],
metrics=BiasMetrics(
demographic_parity=0.0,
equalized_odds=0.0,
calibration_error=0.0,
disparate_impact=0.0
),
is_fair=True,
violations=[],
recommendations=[]
)
@router.post("/compliance-check", response_model=ComplianceChecklist)
async def check_compliance(
regulation: str = "gdpr",
model_info: dict = None
):
"""Run compliance checklist for a regulation"""
# TODO: Implement compliance checking
return ComplianceChecklist(
regulation=regulation,
checks=[],
passed=0,
failed=0,
overall_status="unknown"
)
@router.get("/regulations")
async def list_regulations():
"""List supported regulations and frameworks"""
return {
"regulations": [
{"code": "gdpr", "name": "EU GDPR", "checks": 15},
{"code": "ccpa", "name": "California CCPA", "checks": 10},
{"code": "ai_act", "name": "EU AI Act", "checks": 20},
{"code": "nist", "name": "NIST AI RMF", "checks": 25},
]
}
@router.get("/metrics")
async def list_fairness_metrics():
"""List available fairness metrics with explanations"""
return {
"metrics": [
{"name": "demographic_parity", "description": "Equal positive prediction rates across groups"},
{"name": "equalized_odds", "description": "Equal TPR and FPR across groups"},
{"name": "calibration", "description": "Predicted probabilities match actual outcomes"},
{"name": "disparate_impact", "description": "Ratio of positive rates (80% rule)"},
]
}