ai-tools-suite/backend/routers/reports.py
2025-12-27 15:33:06 +00:00

118 lines
3.5 KiB
Python

"""Result Interpretation / Report Generator Router"""
from fastapi import APIRouter
from pydantic import BaseModel
from typing import Optional
from datetime import datetime
router = APIRouter()
class MetricInput(BaseModel):
name: str
value: float
previous_value: Optional[float] = None
unit: Optional[str] = None
threshold_warning: Optional[float] = None
threshold_critical: Optional[float] = None
class ReportRequest(BaseModel):
title: str
metrics: list[MetricInput]
period: str = "last_30_days"
audience: str = "executive" # executive, technical, operational
format: str = "markdown" # markdown, json, html
class Insight(BaseModel):
category: str # improvement, decline, stable, anomaly
metric: str
description: str
action: Optional[str] = None
priority: str # high, medium, low
class GeneratedReport(BaseModel):
title: str
generated_at: datetime
summary: str
insights: list[Insight]
action_items: list[str]
content: str # Full report content
@router.post("/generate", response_model=GeneratedReport)
async def generate_report(request: ReportRequest):
"""Generate an interpreted report from metrics"""
# TODO: Implement report generation with LLM
insights = []
action_items = []
for metric in request.metrics:
# Simple trend analysis
if metric.previous_value:
change = ((metric.value - metric.previous_value) / metric.previous_value) * 100
if change > 10:
insights.append(Insight(
category="improvement",
metric=metric.name,
description=f"{metric.name} increased by {change:.1f}%",
priority="medium"
))
elif change < -10:
insights.append(Insight(
category="decline",
metric=metric.name,
description=f"{metric.name} decreased by {abs(change):.1f}%",
action=f"Investigate cause of {metric.name} decline",
priority="high"
))
return GeneratedReport(
title=request.title,
generated_at=datetime.now(),
summary=f"Report covering {request.period} with {len(request.metrics)} metrics analyzed.",
insights=insights,
action_items=action_items,
content=""
)
@router.post("/summarize")
async def summarize_metrics(metrics: list[MetricInput]):
"""Generate an executive summary from metrics"""
# TODO: Implement LLM-based summarization
return {
"summary": "Executive summary placeholder",
"key_points": [],
"concerns": []
}
@router.get("/templates")
async def list_report_templates():
"""List available report templates"""
return {
"templates": [
{"name": "weekly_performance", "description": "Weekly AI performance report"},
{"name": "monthly_costs", "description": "Monthly cost analysis report"},
{"name": "quarterly_review", "description": "Quarterly business review"},
{"name": "incident_summary", "description": "Incident and downtime summary"},
]
}
@router.post("/schedule")
async def schedule_report(
template: str,
frequency: str, # daily, weekly, monthly
recipients: list[str]
):
"""Schedule automated report generation"""
# TODO: Implement report scheduling
return {
"message": "Report scheduled",
"template": template,
"frequency": frequency,
"recipients": recipients
}